Applying the N-isopropylacrylamide gel dosimeter to quantify dynamic dose effects: A feasibility study

Author:

Sun Jung-Chang12,Hsieh Bor-Tsung2,Hsieh Chih-Ming3,Tsang Yuk-Wah14,Cheng Kai-Yuan2

Affiliation:

1. Department of Radiation Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan

2. Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan

3. Department of Medical Imaging, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan

4. Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan

Abstract

BACKGROUND: The gel dosimeter is a chemical as well as a relative dosimeter. OBJECTIVE: To evaluate the feasibility of using N-isopropylacrylamide (NIPAM) gel dosimeter to observe the dynamic dose effects and quantification of the respiration, and to help determine the safety margins. METHODS: The NIPAM gel dosimeter combined with the dynamic phantom was used to simulate radiotherapy of lung or upper abdominal tumor. The field set to 4 × 5 cm2, simulate respiratory rate of 4 sec/cycle, and motion range 2 cm. MRI was used for reading, and MATLAB was used for analysis. The 3%/3 mm gamma passing rate > 95% was used as a clinical basis for evaluation. RESULTS: The dynamic dose curve was compared with 4 × 5, 4 × 4, 4 × 3 cm2 TPS, and gamma passing rates were 74.32%, 54.83%, 30.18%. Gamma mapping demonstrated that the highest dose region was similar to the result of the 4 × 4 cm2 TPS. After appropriate selection and comparing that the ⩾ 60% part of the dose curve with TPS, the gamma passing rate was 96.49%. CONCLUSIONS: Using the NIPAM gel dosimeter with dynamic phantom to simulate organ motion during respiration for dynamic dose measurement and quantified the dynamic dose effect is feasible. The results are consistent with clinical evaluation standards.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3