Multi-gene genetic programming to building up fuzzy rule-base in Neo-Fuzzy-Neuron networks

Author:

Brás Glender1,Silva Alisson Marques1,Wanner Elizabeth Fialho1

Affiliation:

1. Graduate Program in Mathematical and Computational Modeling, CEFET-MG - Federal Center of Technological Education of Minas Gerais, Av. Amazonas, 7675 - Nova Gameleira, Belo Horizonte - MG - Brazil

Abstract

This paper introduces a new approach to build the rule-base on Neo-Fuzzy-Neuron (NFN) Networks. The NFN is a Neuro-Fuzzy network composed by a set of n decoupled zero-order Takagi-Sugeno models, one for each input variable, each one containing m rules. Employing Multi-Gene Genetic Programming (MG-GP) to create and adjust Gaussian membership functions and a Gradient-based method to update the network parameters, the proposed model is dubbed NFN-MG-GP. In the proposed model, each individual of MG-GP represents a complete rule-base of NFN. The rule-base is adjusted by genetic operators (Crossover, Reproduction, Mutation), and the consequent parameters are updated by a predetermined number of Gradient method epochs, every generation. The algorithm uses Elitism to ensure that the best rule-base is not lost between generations. The performance of the NFN-MG-GP is evaluated using instances of time series forecasting and non-linear system identification problems. Computational experiments and comparisons against state-of-the-art alternative models show that the proposed algorithms are efficient and competitive. Furthermore, experimental results show that it is possible to obtain models with good accuracy applying Multi-Gene Genetic Programming to construct the rule-base on NFN Networks.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A genetic algorithm for rule extraction in fuzzy adaptive learning control networks;Genetic Programming and Evolvable Machines;2024-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3