Affiliation:
1. Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Jharkhand
Abstract
In a real-time application such as traffic monitoring, it is required to process the enormous amount of data. Traffic prediction is essential for intelligent transportation systems (ITSs), traffic management authorities, and travelers. Traffic prediction has become a challenging task due to various non-linear temporal dynamics at different locations, complicated underlying spatial dependencies, and more extended step forecasting. To accommodate these instances, efficient visualization and data mining techniques are required to predict and analyze the massive amount of traffic big data. This paper presents a deep learning-based parallel convolutional neural network (Parallel-CNN) methodology to predict the traffic conditions of a specific region. The methodology of deep learning contains multiple processing layers and performs various computational strategies, which is used to learn representations of data with multilevel abstraction. The data has captured from the department of transportation; thus, the size of data is vast, and it can be analyzed to get the behavior of the traffic condition. The purpose of this paper is to monitor traffic behavior, which enables the user to make decisions to build the traffic-free cities. Experimental results show that the proposed methodology outperforms other existing methods such as KNN, CNN, and FIMT-DD.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献