Choosing Interim Sample Sizes in Group Sequential Designs

Author:

Tarima Sergey1,Flournoy Nancy2

Affiliation:

1. Division of Biostatistics, Medical College of Wisconsin, starima@mcw.edu

2. Department of Statistics, University of Missouri-Columbia, flournoyn@missouri.edu

Abstract

This manuscript investigates sample sizes for interim analyses in group sequential designs. Traditional group sequential designs (GSD) rely on “information fraction” arguments to define the interim sample sizes. Then, interim maximum likelihood estimators (MLEs) are used to decide whether to stop early or continue the data collection until the next interim analysis. The possibility of early stopping changes the distribution of interim and final MLEs: possible interim decisions on trial stopping excludes some sample space elements. At each interim analysis the distribution of an interim MLE is a mixture of truncated and untruncated distributions. The distributional form of an MLE becomes more and more complicated with each additional interim analysis. Test statistics that are asymptotically normal without a possibly of early stopping, become mixtures of truncated normal distributions under local alternatives. Stage-specific information ratios are equivalent to sample size ratios for independent and identically distributed data. This equivalence is used to justify interim sample sizes in GSDs. Because stage-specific information ratios derived from normally distributed data differ from those derived from non-normally distributed data, the former equivalence is invalid when there is a possibility of early stopping. Tarima and Flournoy [3] have proposed a new GSD where interim sample sizes are determined by a pre-defined sequence of ordered alternative hypotheses, and the calculation of information fractions is not needed. This innovation allows researchers to prescribe interim analyses based on desired power properties. This work compares interim power properties of a classical one-sided three stage Pocock design with a one-sided three stage design driven by three ordered alternatives.

Publisher

IOS Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3