Automation of fuzzy systems for intelligent traffic lights

Author:

Silva Victor L.1,de Menezes José Maria P.1

Affiliation:

1. Automation and Intelligent Systems Group, Electrical Engineering, Federal University of Piauí, Teresina, Piauí, Brazil

Abstract

Intense vehicle traffic is one of the main disorders in large cities, and in Brazil, where the responsible authorities have not trained the road networks, overcrowding in traffic causes even more obstacles. The applications of computational intelligence techniques in traffic are very broad, with emphasis on smart traffic lights. For the design of intelligent traffic lights, this work proposes the use of Fuzzy Logic, and has as main objective the automatic generation of fuzzy systems using evolutionary fuzzy models for this purpose. To achieve this objective, the traffic simulation software SUMO is used, which allows the elaboration of scenarios of intersections controlled by traffic lights. In these scenarios, the traffic performance is evaluated based on different adjustments in the membership functions and in the set of rules of the fuzzy system that controls the traffic lights, and these adjustments are performed by Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). When comparing the traffic performance with traffic lights controlled by fuzzy and fuzzy with optimized hyperparameters, there are important improvements in the analyzed traffic variables, such as waiting time and car queue size/length, in addition to reducing the emission of toxic gases and fuel consumption. Thus, this work highlights the importance of employing evolutionary fuzzy models in hyperparameters optimization.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference32 articles.

1. Intelligent transportation spaces: Vehicles, traffic, communications, and beyond;Qu;IEEE Communications Magazine,2010

2. A survey of intelligent traffic light control systems;Gala;International Journal of Computer Applications,2018

3. Intelligent traffic light control using image processing;Maturkar;International Journal for Research in Applied Science and Engineering Technology,2020

4. A multiple inductive loop vehicle detection system for heterogeneous and lane-less traffic;Sheik Mohammed Ali;IEEE Transactions on Instrumentation and Measurement,2012

5. Vehicle-classification algorithm based on component analysis for single-loop inductive detector;Meta;IEEE Transactions on Vehicular Technology,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3