A new neural network based on smooth function for SOCCVI problems

Author:

Liu Yitong1,Mu Xuewen1

Affiliation:

1. School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi, China

Abstract

 A new neural network is proposed to solve the second-order cone constrained variational inequality (SOCCVI) problems. Instead of the smoothed Fishcer-Burmeister function, a smooth regularized Chen-Harker-Kanzow-Smale (CHKS) function is used to handle relevant complementarity conditions. By using a neural network approach based on the CHKS function, the KKT conditions corresponding to the SOCCVI are solved. Some stability properties of the neural network can be verified by the Lyapunov method. When the parameters of the neural network are different, the achieved convergence speed will also vary. Further by controlling the corresponding parameters, the neural network can achieve a faster convergence speed than a classical model. Numerical simulations are applied to examine the computing capability of the neural network as well as the influence of parameters on it.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference38 articles.

1. A new neural network modelfor solving random interval linear programming problems;Arjmandzadeh;NeuralNetworks,2017

2. Numerical analysis of anevolutionary variational Chemivariational inequality withapplication in contact mechanics;Barboteu;Computer Methods in Applied Mechanics & Engineering,2017

3. A non-interior-point continuationmethod for linear complementarity problems;Chen;SIAM Journal onMatrix Analysis and Applications,1993

4. An unconstrained smooth minimizationreformulation of the second-order cone complementarity problem;Chen;Mathematical Programming,2005

5. Evolutionaryquasi-variational inequality for a production economy;Donato;Nonlinear Analysis: Real World Applications,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3