Safemedchain — drug counterfeit prevention and recommendation using blockchain and machine learning

Author:

Gopikarani N.1,Gayathri B.1,Praja S.S.1,Sridharan Sneha1

Affiliation:

1. Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, India

Abstract

Counterfeit drugs are without a doubt becoming a greater hazard to consumers and the pharmaceutical sector. As a result, real-time visibility of drug manufacturing and management is required. The proposed system uses Ethereum blockchain as the main technology. The primary advantage of blockchain technology is that the transactions are maintained in immutable digital ledger format and it may be read easily without jeopardizing the users’ security and privacy. In our proposed system, the admin validates and adds the manufacturers. The manufacturer after registering and logging in can perform tasks like adding the drug and seller list. The seller can place order to the manufacturer which the manufacturer can accept or reject. The seller can update status of order of accepted orders to delivered. The customer can view the order details by entering the serial number on the drug package. Any transaction or exchange that occurs in the network is recorded in the chain. It functions similarly to other networks, but blockchain technology is distinguished by the fact that no data can be removed or altered by anyone in the network. No changes to the network can be made unless it has been validated by all of the network’s authorized users. All the information stored can be read by anybody so to incorporate more security, AES has been used to store data in the blockchain. The use of AES encryption technique distinguishes this system from all the existing implementations. Thus, this makes it easy to trace to the exact point in the supply chain and detect any counterfeit drugs in movement. As an extension to the drug counterfeit prevention system a Drug Recommendation System is also performed using the ensemble model with a combination of Random Forest and Logistic Regression for sentiment analysis training. Furthermore, when compared to the existing Linear SVM model, which has an accuracy of 90.39%, the suggested model has the best accuracy of 93.31%. Using the obtained sentiment for each drug, the drug is predicted accurately for the specified medical condition.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference22 articles.

1. Blockchain technology and its applications - an overview,;Uma Maheswari;International Journal for Research in Applied Science and Engineering Technology (IJRASET),2020

2. Blockchain technology in pharmaceutical industry to prevent counterfeit drugs,;Haq;International Journal of Computer Applications,2018

3. CFDD (CounterFeit Drug Detection) using blockchain in the pharmaceutical industry;Kumari;International Journal of Engineering Research &Technology (IJERT),2019

4. A blockchain based model to eliminate drug counterfeiting, in. Singapore, Springer;Monalisa;Machine Learning and Information Processing,2020

5. Detecting fake drugs using blockchain,;Abhinav Sanghi;International Journal of Recent Technology and Engineering (IJRTE),2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Barriers to blockchain-enabled drug recycling: A TISM-MICMAC approach;Sustainable Chemistry and Pharmacy;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3