Multi-scale spatio-temporal network for skeleton-based gait recognition

Author:

He Dongzhi1,Xue Yongle1,Li Yunyu1,Sun Zhijie1,Xiao Xingmei1,Wang Jin1

Affiliation:

1. College of Software Engineering, Beijing University of Technology, Beijing, China

Abstract

Gait has unique physiological characteristics and supports long-distance recognition, so gait recognition is ideal for areas such as home security and identity detection. Methods using graph convolutional networks usually extract features in the spatial and temporal dimensions by stacking GCNs and TCNs, but different joints are interconnected at different moments, so splitting the spatial and temporal dimensions can cause the loss of gait information. Focus on this problem, we propose a gait recognition network, Multi-scale Spatio-Temporal Gait (MST-Gait), which can learn multi-scale gait information simultaneously from spatial and temporal dimensions. We design a multi-scale spatio-temporal groups Transformer (MSTGT) to model the correlation of intra-frame and inter-frame joints simultaneously. And a multi-scale segmentation strategy is designed to capture the periodic and local features of the gait. To fully exploit the temporal information of gait motion, we design a fusion temporal convolution (FTC) to aggregate temporal information at different scales and motion information. Experiments on the popular CASIA-B gait dataset and OUMVLP-Pose dataset show that our method outperforms most existing skeleton-based methods, verifying the effectiveness of the proposed modules.

Publisher

IOS Press

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3