Imaging of conducting materials via the Kernel Method

Author:

Tamburrino Antonello12ORCID,Mottola Vincenzo1ORCID

Affiliation:

1. Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, , Italy

2. Department of Electrical and Computer Engineering, Michigan State University, , USA

Abstract

In this work, we present a new non-iterative imaging method for Electrical Resistance Tomography (ERT). The problem in ERT is retrieving the spatial behaviour of the electrical conductivity by means of boundary measurements in steady-state conditions. Specifically, the interest is focused on the inverse obstacle problem, that consists in reconstructing the shape, position and dimension of one or more anomalies embedded in a known background. The proposed method, called Kernel Method, is based on the idea that if there exists a current density Jn that applied at the boundary ∂𝛺 of the domain under investigation 𝛺 produces the same scalar potential (on ∂𝛺), with and without anomalies, then the power density corresponding to Jn, evaluated on a configuration without anomalies, is vanishing in the region occupied by the latter. The proposed method has a very low computational cost. Indeed, the evaluation of the desired current density Jn on ∂𝛺 requires a negligible computational effort, and the reconstructions require only one forward problem.

Publisher

IOS Press

Reference12 articles.

1. Application of electrical resistivity tomography (ERT) for rock mass quality evaluation;Hasan;Scientific Reports,2021

2. Applications of electrical impedance tomography (EIT): a short review, IOP conference series;Bera;Materials Science and Engineering,2018

3. A simple method for solving inverse scattering problems in the resonance region;Colton;Inverse Problems,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3