Spectral gaps in a double-periodic perforated Neumann waveguide

Author:

Gómez Delfina1,Nazarov Sergei A.2,Orive-Illera Rafael34,Pérez-Martínez María-Eugenia5

Affiliation:

1. Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Spain

2. Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Russia

3. Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Spain

4. Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain

5. Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Spain

Abstract

We examine the band-gap structure of the spectrum of the Neumann problem for the Laplace operator in a strip with periodic dense transversal perforation by identical holes of a small diameter ε > 0. The periodicity cell itself contains a string of holes at a distance O ( ε ) between them. Under assumptions on the symmetry of the holes, we derive and justify asymptotic formulas for the endpoints of the spectral bands in the low-frequency range of the spectrum as ε → 0. We demonstrate that, for ε small enough, some spectral gaps are open. The position and size of the opened gaps depend on the strip width, the perforation period, and certain integral characteristics of the holes. The asymptotic behavior of the dispersion curves near the band edges is described by means of a ‘fast Floquet variable’ and involves boundary layers in the vicinity of the perforation string of holes. The dependence on the Floquet parameter of the model problem in the periodicity cell requires a serious modification of the standard justification scheme in homogenization of spectral problems. Some open questions and possible generalizations are listed.

Publisher

IOS Press

Subject

General Mathematics

Reference46 articles.

1. Bloch wave homogenization and spectral asymptotic analysis;Allaire;J. Math. Pures Appl.,1998

2. H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman, Boston, 1984.

3. Effects of Rayleigh waves on the essential spectrum in perturbed doubly periodic elliptic problems;Bakharev;Integral Equations Operator Theory,2017

4. Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions;Bakharev;Sibirsk. Mat. Zh.,2015

5. A gap in the spectrum of the Neumann-Laplacian on a periodic waveguide;Bakharev;Appl. Anal.,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3