Gevrey regularity and summability of the formal power series solutions of the inhomogeneous generalized Boussinesq equations

Author:

Remy Pascal1

Affiliation:

1. Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin, 45 avenue des Etats-Unis, 78035 Versailles cedex, France

Abstract

In this article, we investigate Gevrey and summability properties of the formal power series solutions of the inhomogeneous generalized Boussinesq equations. Even if the case that really matters physically is an analytic inhomogeneity, we systematically examine here the cases where the inhomogeneity is s-Gevrey for any s ⩾ 0, in order to carefully distinguish the influence of the data (and their degree of regularity) from that of the equation (and its structure). We thus prove that we have a noteworthy dichotomy: for any s ⩾ 1, the formal solutions and the inhomogeneity are simultaneously s-Gevrey; for any s < 1, the formal solutions are generically 1-Gevrey. In the latter case, we give in particular an explicit example in which the formal solution is s ′ -Gevrey for no s ′ < 1, that is exactly 1-Gevrey. Then, we give a necessary and sufficient condition under which the formal solutions are 1-summable in a given direction arg ( t ) = θ. In addition, we present some technical results on the generalized binomial and multinomial coefficients, which are needed for the proofs of our various results.

Publisher

IOS Press

Subject

General Mathematics

Reference26 articles.

1. Constructions of the soliton solutions to the good Boussinesq equation

2. W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations, Universitext, Springer-Verlag, New York, 2000.

3. Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables;Balser;Adv. Dyn. Syst. Appl.,2009

4. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond;Boussinesq;J. Math. Pures Appl.,1872

5. Gevrey solutions of singularly perturbed differential equations;Canalis-Durand;J. Reine Angew. Math.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3