Evaluation and comparison of a CdTe based photon counting detector with an energy integrating detector for X-ray phase sensitive imaging of breast cancer

Author:

Ghani Muhammad U.1,Omoumi Farid H.1,Wu Xizeng2,Fajardo Laurie L.3,Zheng Bin1,Liu Hong1

Affiliation:

1. Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA

2. Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA

3. Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA

Abstract

PURPOSE: To compare imaging performance of a cadmium telluride (CdTe) based photon counting detector (PCD) with a CMOS based energy integrating detector (EID) for potential phase sensitive imaging of breast cancer. METHODS: A high energy inline phase sensitive imaging prototype consisting of a microfocus X-ray source with geometric magnification of 2 was employed. The pixel pitch of the PCD was 55μm, while 50μm for EID. The spatial resolution was quantitatively and qualitatively assessed through modulation transfer function (MTF) and bar pattern images. The edge enhancement visibility was assessed by measuring edge enhancement index (EEI) using the acrylic edge acquired images. A contrast detail (CD) phantom was utilized to compare detectability of simulated tumors, while an American College of Radiology (ACR) accredited phantom for mammography was used to compare detection of simulated calcification clusters. A custom-built phantom was employed to compare detection of fibrous structures. The PCD images were acquired at equal, and 30% less mean glandular dose (MGD) levels as of EID images. Observer studies along with contrast to noise ratio (CNR) and signal to noise ratio (SNR) analyses were performed for comparison of two detection systems. RESULTS: MTF curves and bar pattern images revealed an improvement of about 40% in the cutoff resolution with the PCD. The excellent spatial resolution offered by PCD system complemented superior detection of the diffraction fringes at boundaries of the acrylic edge and resulted in an EEI value of 3.64 as compared to 1.44 produced with EID image. At MGD levels (standard dose), observer studies along with CNR and SNR analyses revealed a substantial improvement of PCD acquired images in detection of simulated tumors, calcification clusters, and fibrous structures. At 30% less MGD, PCD images preserved image quality to yield equivalent (slightly better) detection as compared to the standard dose EID images. CONCLUSION: CdTe-based PCDs are technically feasible to image breast abnormalities (low/high contrast structures) at low radiation dose levels using the high energy inline phase sensitive imaging technique.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3