Optimized robust control based ACO technique for two links robot

Author:

Massou Siham1

Affiliation:

1. Laboratoire des Techniques d’information et de Communication (LABTIC), National School of Applied Sciences (ENSA), Abdelmalek Essaadi University, Tangier, Morocco

Abstract

The optimum neural network combined with sliding mode control (ONNSMC) introduces the approach as a means of developing a strong controller for a robot system with two links. Sliding mode control is a strong control method that has found widespread use in a variety of disciplines and recognized for its efficiency and easy tuning to solve a wide variety of control issues using nonlinear dynamics. Nevertheless, the uncertainties in complex nonlinear systems are huge, the higher switching gain leads to an increase of the chattering amplitude. To mitigate this gain, a neural network (NN) is utilized to predict the uncertain sections of the system plant with on-line training using the backpropagation (BP) technique. The learning rate is a hyperparameter of BP algorithm which has an important effect on the results. This parameter controls how much the weights of the network are updated during each training iteration. Typically, the learning rate is set to a value ranging from 0.1 to 1. In this study, the Ant Colony Optimization (ACO) algorithm is employed with the objective of enhancing the network’s convergence speed. Specifically, the ACO algorithm is utilized to optimize this parameter and enable global search capabilities. In order to reduce the response time caused by the online training, the obtained output and input weights are updated using the adaptive laws derived from the Lyapunov stability approach, while simulations are conducted to evaluate its performance. The control action employed in the approach is observed to exhibit smooth and continuous behavior, without any signs of chattering.

Publisher

IOS Press

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3