Longitudinal Relationship Between Brain Atrophy Patterns, Cognitive Decline, and Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease Explored by Orthonormal Projective Non-Negative Matrix Factorization

Author:

Shui Lan123, ,Shibata Dean42,Chan Kwun Chuen Gary12,Zhang Wenbo5,Sung Junhyoun1,Haynor David R.3

Affiliation:

1. Department of Biostatistics, University of Washington, Seattle, WA, USA

2. National Alzheimer’s Coordinating Center, Seattle, WA, USA

3. Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, USA

4. Department of Radiology, University of Washington, Seattle, WA, USA

5. Department of Statistics, University of California Irvine, CA, USA

Abstract

Background: Longitudinal magnetic resonance imaging (MRI) has been proposed for tracking the progression of Alzheimer’s disease (AD) through the assessment of brain atrophy. Objective: Detection of brain atrophy patterns in patients with AD as the longitudinal disease tracker. Methods: We used a refined version of orthonormal projective non-negative matrix factorization (OPNMF) to identify six distinct spatial components of voxel-wise volume loss in the brains of 83 subjects with AD from the ADNI3 cohort relative to healthy young controls from the ABIDE study. We extracted non-negative coefficients representing subject-specific quantitative measures of regional atrophy. Coefficients of brain atrophy were compared to subjects with mild cognitive impairment and controls, to investigate the cross-sectional and longitudinal associations between AD biomarkers and regional atrophy severity in different groups. We further validated our results in an independent dataset from ADNI2. Results: The six non-overlapping atrophy components represent symmetric gray matter volume loss primarily in frontal, temporal, parietal and cerebellar regions. Atrophy in these regions was highly correlated with cognition both cross-sectionally and longitudinally, with medial temporal atrophy showing the strongest correlations. Subjects with elevated CSF levels of TAU and PTAU and lower baseline CSF Aβ42 values, demonstrated a tendency toward a more rapid increase of atrophy. Conclusions: The present study has applied a transferable method to characterize the imaging changes associated with AD through six spatially distinct atrophy components and correlated these atrophy patterns with cognitive changes and CSF biomarkers cross-sectionally and longitudinally, which may help us better understand the underlying pathology of AD.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3