Eye movements and motion perception during off-vertical axis rotation after spaceflight1

Author:

Clément Gilles1,Wood Scott J.2

Affiliation:

1. International Space University, Strasbourg, France

2. NASA Johnson Space Center, Houston, TX, USA

Abstract

Constant velocity off-vertical axis rotation (OVAR) provides dynamic linear acceleration stimuli that can be used to assess otolith function. Eight astronauts were rotated in darkness about their longitudinal axis 20° off vertical at low (0.125 Hz) and high (0.5 Hz) frequencies and their responses were compared before and after spaceflight. Eye movements were recorded using infrared videography and perceived motion was evaluated using a joystick with four degrees of freedom – pitch and roll tilt, front-back and lateral translation. Low-frequency OVAR generates tilt otolith-induced responses – modulation of ocular counter-roll and counter-pitch with perceived conical motion path – whereas high-frequency OVAR generates translational otolith-induced responses – modulation of horizontal and vergence slow phase velocity with perceived cylindrical motion path. While there were transient changes in the amplitude of the translational ocular responses on landing day, there were no major changes in the tilt ocular reflexes after adaptation to weightlessness. However, there was an increase in sensitivity to motion perception after spaceflight. Direct comparisons of pre- and postflight stimuli suggested that OVAR on landing day was less provocative of motion sickness than before spaceflight. These results confirm that some otolith reflexes elicited during passive motion may not be altered by short-duration spaceflight – or may readapt very quickly – and that the resolution of sensory conflict associated with postflight recovery involves higher-order neural processes.

Publisher

IOS Press

Subject

Neurology (clinical),Sensory Systems,Otorhinolaryngology,General Neuroscience

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3