Lowness properties for strong reducibilities and the computational power of maximal sets

Author:

Ambos-Spies Klaus1,Downey Rod2,Monath Martin1

Affiliation:

1. University of Heidelberg, Department of Mathematics and Computer Science, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany

2. Victoria University, School of Mathematics and Statistics, P.O. Box 600, Wellington, New Zealand

Abstract

We introduce the notion of eventually uniformly weak truth table array computable (e.u.wtt-a.c.) sets. As our main result, we show that a computably enumerable (c.e.) set has this property iff it is weak truth table ( wtt-) reducible to a maximal set. Moreover, in this equivalence we may replace maximal sets by quasi-maximal sets, hyperhypersimple sets or dense simple sets and we may replace wtt-reducibility by identity-bounded Turing reducibility (or any intermediate reducibility). Here, a set A is e.u.wtt-a.c. if there is an effective procedure which, for any given partial wtt-functional Φ ˆ, yields a computable approximation g ( x , s ) of the domain of Φ ˆ A together with a computable indicator function k ( x , s ) and a computable order h ( x ) such that, once the indicator becomes positive, i.e., k ( x , s ) = 1, the number of the mind changes of the approximation g on x after stage s is bounded by h ( x ) where, for total Φ ˆ A , the indicator eventually becomes positive on almost all arguments x of Φ ˆ A . In addition to our main result, we show several properties of the computably enumerable e.u.wtt-a.c. sets. For instance, the class of these sets is closed downwards under wtt-reductions and closed under join. Moreover, we relate this class to – and separate it from – well known classes in the literature. On the one hand, the class of the wtt-degrees of the c.e. e.u.wtt-a.c. sets is strictly contained in the class of the array computable c.e. wtt-degrees. On the other hand, every bounded low set is e.u.wtt-a.c. but there are e.u.wtt-a.c. c.e. sets which are not bounded low. Here a set A is bounded low if A † ⩽ wtt ∅ † , i.e., if A † is ω-c.a., where A † is the wtt-jump of A (Anderson, Csima and Lange (Archive for Mathematical Logic 56(5–6) (2017) 507–521)). Finally, we prove that there is a strict hierarchy within the class of the bounded low c.e. sets A depending on the order h that bounds the number of mind changes of a computable approximation of A † , and we show that there exists a Turing complete set A such that A † is h-c.a. for any computable order h with h ( 0 ) > 0.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science

Reference37 articles.

1. Multiple Permitting and Array Noncomputability

2. A bounded jump for the bounded Turing degrees;Anderson;Notre Dame Journal of Formal Logic,2014

3. Bounded low and high sets;Anderson;Archive for Mathematical Logic,2017

4. Working with strong reducibilities above totally ω-c.e. and array computable degrees;Barmpalias;Transactions of the American Mathematical Society,2010

5. Integer valued betting strategies and Turing degrees;Barmpalias;Journal of Computing and System Sciences,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3