Image classification of vaginal microecology detection based on gabor texture and LSTM model

Author:

Yuan Gaoteng1,Dong Yinping2,Zhou Xiaofeng1

Affiliation:

1. College of Computer and Information, Hohai University, Nanjing, Jiangsu, China

2. Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjins Clinical Research Center for Cancer, Tianjin, China

Abstract

BACKGROUND: Gynecological diseases threaten women’s health, and vaginal microecological testing is a common method for detecting gynecological diseases. Efficient and accurate microecological testing methods have always been the goal pursued by gynecologists. OBJECTIVE: In order to automatically identify different types of microbial images in vaginal micromorphology detection, this paper proposes a vaginal microecological image recognition method based on Gabor texture analysis combined with long and short-term memory network (LSTM) model. METHOD: Firstly, we denoise the microecological morphological im-ages, which selects the area of interest and sets the label of the microorganism according to the doctors label. Secondly, texture analysis is carried out for the region of interest, which uses Gabor filters with 8 directions and 5 scales to filter the region of interest to extract the texture features on the image. Comparing the differences between different microbial image features, and screening suitable features to reduce the number of features. Then, we design an LSTM model to analyze the relationship of image features in different categories of microorganisms. Finally, we use the full connection layer and Softmax function to realize the automatic recognition of different microbial images. RESULTS: The experimental results show that the image classification accuracy of 8 common microorganisms is 81.26%. CONCLUSION: Texture analysis combined with LSTM network strategy can identify different kinds of vaginal micro ecological images. Gabor-LSTM model has better classification effect on imbalanced data sets.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3