Single and multiple regions duplication detections in digital images with applications in image forensic

Author:

Nawaz Marriam1,Mehmood Zahid2,Bilal Muhammad3,Munshi Asmaa Mahdi4,Rashid Muhammad5,Yousaf Rehan Mehmood3,Rehman Amjad6,Saba Tanzila6

Affiliation:

1. Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan

2. Department of Computer Engineering, University of Engineering and Technology, Taxila, Pakistan

3. Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan

4. College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

5. Department of Computer Engineering, Umm Al-Qura University, Makkah, Saudi Arabia

6. Artificial Intelligence & Data Analytics (AIDA) Lab, CCIS, Prince Sultan University, Riyadh, Saudi Arabia

Abstract

‘With the help of powerful image editing software, various image modifications are possible which are known as image forgeries. Copy-move is the easiest way of image manipulation, wherein an area of the image is copied and replicated in the same image. The major reason for performing this forgery is to conceal undesirable contents of the image. Thus, means are required to unveil the presence of duplicated areas in an image. In this article, an effective and efficient approach for copy-move forgery detection (CMFD) is proposed, which is based on stationary wavelet transform (SWT), speeded-up robust features (SURF), and a novel scaled density-based spatial clustering of applications with noise (sDBSCAN) clustering. The SWT allows the SURF descriptor to extract only energy-rich features from the input image. The SURF features can detect the tampered regions even under post-processing attacks like contrast adjustment, scaling, and affine transformation on the images. On the extracted features, a novel scaled density-based spatial clustering of applications with noise (sDBSCAN) clustering algorithm is applied to detect forged regions with high accuracy as it can easily identify the clusters of arbitrary shapes and sizes and can filter the outliers. For performance evaluation, three publicly available datasets namely MICC-F220, MICC-F2000, and image manipulation dataset (IMD) are employed. The qualitative and quantitative analysis demonstrates that the proposed approach outperforms state-of-the-art CMFD approaches in the presence of different post-processing attacks.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3