Affiliation:
1. Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi Kusatsu 525-8577, Japan. E-mail: ra0009ef@ed.ritsumei.ac.jp
Abstract
We study the eigenvalues of the two-dimensional Schrödinger operator with a large constant magnetic field perturbed by a decaying scalar potential. For each Landau level, we give the precise asymptotic distribution of eigenvalues created by the minimum, maximum and the closed energy curve of the potential. Normal form reduction, WKB construction and pseudodifferential calculus are applied to the effective Hamiltonian.
Reference31 articles.
1. Schrödinger operators with magnetic fields. I. General interactions;Avron;Duke Math. J.,1978
2. Bohr Sommerfeld rules to all orders;Colin de Verdiere;Ann H. Poincare,2005
3. Développements asymptotiques de l’opérateur de Schrödinger avec champ magnétique fort;Dimassi;Comm. Partial Differential Equations,2001
4. Resonances for magnetic stark Hamiltonians in two dimensional case;Dimassi;IMRN,2004
5. M. Dimassi and J. Sjöstrand, Spectral Asymptotics in Semiclassical Limit, London Mathematical Society, Lecture Notes Series, Vol. 268, Cambridge University Press, 1999.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献