Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary

Author:

Akil Mohammad12,Chitour Yacine3,Ghader Mouhammad13,Wehbe Ali1

Affiliation:

1. Faculty of Sciences 1, Khawarizmi Laboratory of Mathematics and Applications-KALMA, Lebanese University, Hadath-Beirut, Lebanon. E-mails: mohammad.akil@insa-rouen.fr, mhammadghader@hotmail.com, ali.wehbe@ul.edu.lb

2. Insa de Rouen, LMI, 685 Avenue de l’Université, Rouen, France

3. Paris-Saclay University, L2S, 3 Rue Joliot Curie, Gif-sur-Yvette, France. E-mail: yacine.chitour@l2s.centralesupelec.fr

Abstract

In this paper, we study the indirect boundary stability and exact controllability of a one-dimensional Timoshenko system. In the first part of the paper, we consider the Timoshenko system with only one boundary fractional damping. We first show that the system is strongly stable but not uniformly stable. Hence, we look for a polynomial decay rate for smooth initial data. Using frequency domain arguments combined with the multiplier method, we prove that the energy decay rate depends on coefficients appearing in the PDE and on the order of the fractional damping. Moreover, under the equal speed propagation condition, we obtain the optimal polynomial energy decay rate. In the second part of this paper, we study the indirect boundary exact controllability of the Timoshenko system with mixed Dirichlet–Neumann boundary conditions and boundary control. Using non-harmonic analysis, we first establish a weak observability inequality, which depends on the ratio of the waves propagation speeds. Next, using the HUM method, we prove that the system is exactly controllable in appropriate spaces and that the control time can be small.

Publisher

IOS Press

Subject

General Mathematics

Reference52 articles.

1. Stability results of a distributed problem involving Bresse system with history and/or Cattaneo law under fully Dirichlet or mixed boundary conditions;Abdallah;Mathematical Methods in the Applied Sciences,2018

2. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions;Akil;Mathematical Control and Related Fields,2018

3. Stabilisation frontière indirecte de systèmes faiblement couplés;Alabau;Comptes Rendus de l’Académie des Sciences – Series I – Mathematics,1999

4. Observabilité frontière indirecte de systèmes faiblement couplés;Alabau;Comptes Rendus de l’Académie des Sciences – Series I – Mathematics,2001

5. Indirect boundary stabilization of weakly coupled hyperbolic systems;Alabau-Boussouira;SIAM Journal on Control and Optimization,2002

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3