Collaborative possibilistic fuzzy clustering based on information bottleneck

Author:

Duan Chen1,Liu Yongli1

Affiliation:

1. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, China

Abstract

In fuzzy clustering algorithms, the possibilistic fuzzy clustering algorithm has been widely used in many fields. However, the traditional Euclidean distance cannot measure the similarity between samples well in high-dimensional data. Moreover, if there is an overlap between clusters or a strong correlation between features, clustering accuracy will be easily affected. To overcome the above problems, a collaborative possibilistic fuzzy clustering algorithm based on information bottleneck is proposed in this paper. This algorithm retains the advantages of the original algorithm, on the one hand, using mutual information loss as the similarity measure instead of Euclidean distance, which is conducive to reducing subjective errors caused by arbitrary choices of similarity measures and improving the clustering accuracy; on the other hand, the collaborative idea is introduced into the possibilistic fuzzy clustering based on information bottleneck, which can form an accurate and complete representation of the data organization structure based on make full use of the correlation between different feature subsets for collaborative clustering. To examine the clustering performance of this algorithm, five algorithms were selected for comparison experiments on several datasets. Experimental results show that the proposed algorithm outperforms the comparison algorithms in terms of clustering accuracy and collaborative validity.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3