A novel emotion recognition method based on 1D-DenseNet

Author:

Wu Qiyue1,Yuan Yinlong1,Cheng Yun1,Ye Tangdi1

Affiliation:

1. College of Electrical Engineering, Nantong University, Nantong, China

Abstract

Emotion recognition based on EEG (electroencephalogram) is one of the keys to improve communication between doctors and patients, which has attracted much more attention in recent years. While the traditional algorithms are generally based on using the original EEG sequence signal as input, they neglect the bad influence of noise that is difficult to remove and the great importance of shallow features for the recognition process. As a result, there is a difficulty in recognizing and analyzing emotions, as well as a stability error in traditional algorithms. To solve this problem, in this paper, a new method of EEG emotion recognition based on 1D-DenseNet is proposed. Firstly, we extract the band energy and sample entropy of EEG signal to form a 1D vector instead of the original sequence signal to reduce noise interference. Secondly, we construct a 1D-Densenet model, which takes the above-mentioned 1D vector as the input, and then connects the shallow manual features of the input layer and the output of each convolution layer as the input of the next convolution layer. This model increases the influence proportion of shallow features and has good performance. To verify the effectiveness of this method, the MAHNOB-HCI and DEAP datasets are used for analysis and the average accuracy of emotion recognition reaches 90.02% and 93.51% respectively. To compare with the current research results, the new method proposed in this paper has better classification effect. Simple preprocessing and high recognition accuracy make it easy to be applied to real medical research.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference22 articles.

1. Learning densenetfeatures from eeg based spectrograms for subject independent emotionrecognition;Pusarla;Biomedical Signal Processing and Control,2022

2. A main directional mean optical flowfeature for spontaneous micro-expression recognition;Liu;IEEETransactions on Affective Computing,2015

3. Dnn-cbam: An enhanced dnn model forfacial emotion recognition;Zhang;Journal of Intelligent and FuzzySystems,2022

4. Deep ganitrus algorithm for speech emotionrecognition;Shukla;Journal of Intelligent and Fuzzy Systems

5. Integrating facial expression and bodygesture in videos for emotion recognition;Yan;IEICE Transactionson Information and Systems,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3