Improving multi-view facial expression recognition through two novel texture-based feature representations

Author:

Wang Xuejian1,Fairhurst Michael C.1,Canuto Anne M.P.2

Affiliation:

1. School of Engineering and Digital Arts, Jennison Building, University of Kent, UK

2. Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal, RN, Brazil

Abstract

Although several automatic computer systems have been proposed to address facial expression recognition problems, the majority of them still fail to cope with some requirements of many practical application scenarios. In this paper, one of the most influential and common issues raised in practical application scenarios when applying automatic facial expression recognition system, head pose variation, is comprehensively explored and investigated. In order to do this, two novel texture feature representations are proposed for implementing multi-view facial expression recognition systems in practical environments. These representations combine the block-based techniques with Local Ternary Pattern-based features, providing a more informative and efficient feature representation of the facial images. In addition, an in-house multi-view facial expression database has been designed and collected to allow us to conduct a detailed research study of the effect of out-of-plane pose angles on the performance of a multi-view facial expression recognition system. Along with the proposed in-house dataset, the proposed system is tested on two well-known facial expression databases, CK+ and BU-3DFE datasets. The obtained results shows that the proposed system outperforms current state-of-the-art 2D facial expression systems in the presence of pose variations.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Reference52 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiview Facial Expression Recognition, A Survey;IEEE Transactions on Affective Computing;2022-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3