Multi-objective intelligent algorithm model design for housing environment optimization

Author:

Xu Yuanyuan

Abstract

With the improvement of the national living standard, the buyers have higher and higher requirements for the rationality and aesthetics of the spatial planning and layout of the residential area. The traditional residential space planning method is purely manual design, which is inefficient, and the design effect will be greatly affected by the designer’s work experience and personal aesthetics. Therefore, this research attempts to combine Pareto solution set and piecewise prediction idea into genetic algorithm, propose an algorithm for solving multi-objective optimization problems, and build an intelligent housing environment planning system based on this. The statistical results of simulation experiments show that the system can output more design schemes with better overall quality than the comparison system and manual planning results, and the stability of multiple operations is higher. When the number of iterations reaches 200, the average value of Pareto optimal solution number and optimal solution quality index QPS of the former is 44 and 0.41, respectively. The expert group analyzed the design results of this method and the manual method for an actual case, and found that the results designed by this method met the requirements and the calculation efficiency was much faster than manual processing. From the simulation test data and the actual case analysis, it can be seen that the intelligent housing environment planning system designed in this study is helpful to improve the efficiency of residential space design and the stability of residential space scheme style.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Spatial Optimization Algorithm in Intelligent Aging Environment Design;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

2. Big Data-Driven Intelligent Analysis for Art Design Schemes Based on Grey Correlation;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3