Higher Vulnerability of Heterotrophic Soil Respiration to Temperature Drop in Fallows than in Meadows

Author:

Chmolowska Dominika12

Affiliation:

1. Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland

2. Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland

Abstract

The present study examines the difference between stability and climatic factors of soil microbial communities in two ecosystem types with similar plant biomass, while differing in plant diversity, successional stage and complexity. Observations of variation in stability can be applied to climate change investigations, a topic of current pivotal importance. We compared responses of soil basal respiration to short time perturbation in soils collected from six established (meadow) and six early successional (fallow) ecosystems by exposing them to thermal and water stress. Resistance and resilience indices were calculated to describe how much a system was affected by and recovered from perturbation. The soil’s physico-chemical properties and plant community composition were identified and used for correlation and regression analyses with the stability indices. There was a smaller relative change in soil respiration in meadows than in fallows as temperature decreased from 22 to 10°C. Resistance to coolness was correlated to higher soil pH, while resilience to plant species richness. The drying-rewetting experiment highlighted that the stability indices became non-linear when a data set had high variations. Soil microbial communities in a more complex and mature ecosystem type (meadow) were more stable under a moderate perturbation. This might have been supported by co-occurring factors, with soil pH being the most influential. The slightly acidic fallow soil might have a higher potential for carbon sequestration than neutral meadow soil.

Publisher

IOS Press

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3