A self-adapting multi-LSTM ensemble regression mode for failure prediction of transmission line network from wireless mesh nodes’ data

Author:

Sun Hongbin1,Liu Mingjun2,Qing Zhejun2,Miller Chandler3

Affiliation:

1. School of Electrical Engineering, Changchun Institute of Technology, Changchun, Jilin, China

2. Baishan Power Supply Company, State Grid Jilin Electric Power Company Limited, Jilin, China

3. Department of Electrical Engineering, Texas A&M University, USA

Abstract

Transmission lines’ condition monitoring is an important part of smart grid construction. To ensure fast and efficient transmission of data, many mash-based wireless networks devices are adopted to collect status information. Since these nodes are exposed to the natural environment, vulnerable to damage, so it is very necessary to be predicting nodes’ fault. However, these mesh nodes are affected by a variety of complex and time-series factors, and traditional models are difficult to achieve effective failure prediction. To solve this problem, this paper proposes a self-adapting multi-LSTM ensemble regression model for transmission line network’s wireless mesh node failure prediction (MLSTM-FP), through establishes the corresponding relationship between similar time factors and LSTMs, the proposed model can realize multi time series data self-adapting and accurate failure prediction of transmission line network’s wireless mesh nodes, The experimental results show that the proposed method has a good prediction ability than traditional methods.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Diagnosis and Localization of Transmission Lines Based on R-Net Algorithm Optimized by Feature Pyramid Network;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2024-07-01

2. Fault Analysis Method of Active Distribution Network Under Cloud Edge Architecture;International Journal of Information Technologies and Systems Approach;2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3