SLR-YOLO: An improved YOLOv8 network for real-time sign language recognition

Author:

Jia Wanjun1,Li Changyong1

Affiliation:

1. Institute of Modern Industries for Intelligent Manufacturing, Xinjiang University, Urumqi, Xinjiang, China

Abstract

This study proposes a method to help people with different degrees of hearing impairment to better integrate into society and perform more convenient human-to-human and human-to-robot sign language interaction through computer vision. Traditional sign language recognition methods make it challenging to get good results on scenes with backgrounds close to skin color, background clutter, and partial occlusion. In order to realize faster real-time display, by comparing standard single-target recognition algorithms, we choose the best effect YOLOv8 model, and based on this, we propose a lighter and more accurate SLR-YOLO network model that improves YOLOv8. Firstly, the SPPF module is replaced with RFB module in the backbone network to enhance the feature extraction capability of the network; secondly, in the neck, BiFPN is used to enhance the feature fusion of the network, and the Ghost module is added to make the network lighter; lastly, in order to introduce partial masking during the training process and to improve the data generalization capability, Mixup, Random Erasing and Cutout three data enhancement methods are compared, and finally the Cutout method is selected. The accuracy of the improved SLR-YOLO model on the validation sets of the American Sign Language Letters Dataset and Bengali Sign Language Alphabet Dataset is 90.6% and 98.5%, respectively. Compared with the performance of the original YOLOv8, the accuracy of both is improved by 1.3 percentage points, the amount of parameters is reduced by 11.31%, and FLOPs are reduced by 11.58%.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference23 articles.

1. Global burden of 369 diseases and injuries in 204 countries and territories, –: a systematic analysis for the Global Burden of Disease Study;Vos;The Lancet,2020

2. Global return on investment and cost-effectiveness of WHO’s HEAR interventions for hearing loss: a modelling study;Tordrup;The Lancet Global Health,2022

3. Research on Improved YOLOv5s Sign Language Recognition Algorithm;Xing;Computer Engineering and Applications,2022

4. Automatic sign language analysis: a survey and the future beyond lexical meaning;Ong;Pattern Analysis & Machine Intelligence IEEE Transactions On,2005

5. A gesture-based method for natural interaction in smart spaces;Wang;Journal of Ambient Intelligence and Smart Environments,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real Time Asl-To-Text Conversion: Utilizing Yolov8s for Gesture Recognition;REST Journal on Data Analytics and Artificial Intelligence;2024-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3