Affiliation:
1. School of Computer Science and Engineering, VIT-AP University, Amaravati, India
Abstract
Visualization-based malware detection gets more and more attention for detecting sophisticated malware that traditional antivirus software may miss. The approach involves creating a visual representation of the memory or portable executable files (PEs). However, most current visualization-based malware classification models focus on convolution neural networks instead of Vision transformers (ViT) even though ViT has a higher performance and captures the spatial representation of malware. Therefore, more research should be performed on malware classification using vision transformers. This paper proposes a multi-variants vision transformer-based malware image classification model using multi-criteria decision-making. The proposed method employs Multi-variants transformer encoders to show different visual representation embeddings sets of one malware image. The proposed architecture contains five steps: (1) patch extraction and embeddings, (2) positional encoding, (3) multi-variants transformer encoders, (4) classification, and (5) decision-making. The variants of transformer encoders are transfer learning-based models i.e., it was originally trained on ImageNet dataset. Moreover, the proposed malware classifier employs MEREC-VIKOR, a hybrid standard evaluation approach, which combines multi-inconsistent performance metrics. The performance of the transformer encoder variants is assessed both on individual malware families and across the entire set of malware families within two datasets i.e., MalImg and Microsoft BIG datasets achieving overall accuracy 97.64 and 98.92 respectively. Although the proposed method achieves high performance, the metrics exhibit inconsistency across some malware families. The results of standard evaluation metrics i.e., Q, R, and U show that TE3 outperform the TE1, TE2, and TE4 variants achieving minimal values equal to 0. Finally, the proposed architecture demonstrates a comparable performance to the state-of-the-art that use CNNs.