Multiple refinement and integration network for Salient Object Detection

Author:

Dai Chao1,Pan Chen1,He Wei1,Sun Hanqi1

Affiliation:

1. Department of College of Information Engineering, China Jiliang University, China

Abstract

The purpose of the salient object detection (SOD) task is to suppress the background noise and segment the salient foreground regions. Some previous methods considered the strategies of background suppression and multi-level feature fusion. Other methods encountered the problem that single-scale convolution features are difficult to capture the correct object size. This paper reconsiders the above problems and proposes a comprehensive solution to achieve SOD for improving the detection performance and ensuring relatively fewer parameters. First, it is difficult to achieve a better refinement effect through only one refinement operation. To this end, a multi-scale denoising module (MSDM) and multi-pooling refinement module (MPRM) are proposed to jointly complete the refinement task of multi-level features. Besides, it is difficult to fully integrate complementary features through only one feature integration operation. Mutual learning module (MLM) is proposed to preliminarily integrate multi-level features. To reduce information redundancy, multi-attention (MA) mechanism is used to assist further integration. The proposed algorithm is called multiple refinement and integration network (MRINet). Experimental results on five benchmark datasets show that MRINet outperforms state-of-the-art methods on multiple evaluation metrics. Moreover, our ResNet-based algorithm only contains 25.202 million parameters, which is less than other ResNet-based algorithms and can run at over 37 fps on a single GPU. The code will be available at https://github.com/dc3234/MRINet.

Publisher

IOS Press

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3