Optimization of microwave assisted extraction and biological activities of total flavonoids from grape seed using response surface methodology

Author:

Wen Yao1,Su Caimei1,Mai Xueying1

Affiliation:

1. School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China

Abstract

Aiming to reduce the environmental contamination and resource wastage generated by discarded grape seed, the management of discarded grape seed should be carried out and their potential bioactivities and pharmacological properties ought to be exploited to the fullest extent possible. A Box–Behnken design of response surface methodology was employed to further optimize microwave-assisted extraction setting for grape seed total flavonoids (GSFE). In addition, the extract (GSFE) of total flavonoids obtained were refined through AB-8 macroporous resin for obtaining more pure flavonoid (GSFP) with determination of their in vitro hypoglycemic activity and antioxidant activity. The results indicated that following optimized extraction conditions were achieved: ethanol concentration 50% liquid-solid ratio 21:1 mL/g, microwave power 540 W, microwave time 126 s. Below mentioned conditions, the extraction yield reached an average experimental value (1.979 mg/g), representing 1.69 times higher than that of water extraction (1.17 mg/g). In contrast to GSFE, the purity of GSFE after purification (GSFP) exhibited a high degree of purity at 13.753 mg/g, representing nearly 2.50 times that of GSFE (3.926 mg/g). GSFP possessed high α-glucosidase and α-amylase inhibitory activities as well as DPPH and ABTS+ free radical scavenging activities with an IC50 value of 0.00641, 0.0257, 0.0669 and 0.0708 mg/mL, inferior to that of GSFE (0.0514, 0.186, 0.129 and 0.223 mg/g). Within present work, the microwave technique for extraction of total flavonoids from grape seeds was investigated with an efficient and cost-effective extraction method. Total flavonoids of grape seeds have certain in vitro blood glucose and antioxidant activity, and the purified total flavonoid biological activity has improved, laying the foundation for further study of its pharmacological activity.

Publisher

IOS Press

Subject

Horticulture,Plant Science,Soil Science,Agronomy and Crop Science,Biochemistry,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3