The study of Letrozole adsorption upon CCT nanotube: A DFT/TD-DFT and spectroscopic (excited states and UV/Vis)

Author:

Masnabadi Nasrin1

Affiliation:

1. Department of Chemistry, Roudehen Branch, Islamic Azad University, Roudehen, Iran

Abstract

In this research, the geometric structure of LTZ and CCT (5,0) was optimized with B3LYP/6-31G* method using the Gaussian 09W program package to investigate the weak interaction of Letrozole (LTZ) and carbon carbon nanotube (CCT). According to the calculation of the release energy, it was found that the drug delivery process is desirable. Also, the structural properties of the title compounds were assessed by thermodynamic and frontier molecular orbital (FMO) parameters. In this study, a series of measures have been performed to detect changes in drug loading properties and non-bonding interactions between the LTZ and CCT (5,0) nanotube. The non-bonding interaction effects of LTZ and CCT over the electronic properties were also evaluated and argued. The research is based on the fact that studies can help to understand the interaction between the LTZ drug and CCT (5,0) nanotube and the development of CCT-based drug release systems. This research aimed to determine variations in electronic properties of anticancer LTZ drug in presences CCT. Then, the reactivity and stability behavior of LTZ drug and on CCT to be examined by density functional theory (DFT). Then, frontier molecular orbital (FMO) and noncovalent interaction (NCI) analyses were performed, which decrease in reactivity described increase in the stability of LTZ drug.

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

Reference29 articles.

1. Nanotubes for electronics;Collins;Scientific American,2000

2. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release;Qian;International Journal of Nanomedicine,2012

3. Recent advances in nanoparticle-mediated drug delivery;Kumar;Journal of Drug Delivery Science and Technology,2017

4. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems;Karimi;Chemical Society Reviews,2016

5. biodistribution and highly efficient tumour targeting of carbon nanotubes in mice;Liu;Nature Nanotechnology,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3