Highly accurate brain tumor detection with high sensitivity using transform-based functions and machine learning algorithms

Author:

Bhatt Ashish,Nigam Vineeta Saxena

Abstract

BACKGROUND: Brain tumor is an extremely dangerous disease with a very high mortality rate worldwide. Detecting brain tumors accurately is crucial due to the varying appearance of tumor cells and the dimensional irregularities in their growth. This poses a significant challenge for detection algorithms. Currently, there are numerous algorithms utilized for this purpose, ranging from transform-based methods to those rooted in machine learning techniques. These algorithms aim to enhance the accuracy of detection despite the complexities involved in identifying brain tumor cells. The major limitation of these algorithms is the mapping of extracted features of a brain tumor in the classification algorithms. OBJECTIVE: To employ a combination of transform methods to extract texture feature from brain tumor images. METHODS: This paper employs a combination of transform methods based on sub band decomposition for texture feature extraction from MRI scans, hybrid feature optimization methods using firefly and glow-worm algorithms for selection of feature, employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods. RESULTS: The algorithm under consideration has been put into practice using MATLAB, utilizing datasets from BRATS (Brain Tumor Segmentation) for the years 2013, 2015, and 2018. These datasets serve as the foundation for testing and validating the algorithm’s performance across different time periods, providing a comprehensive assessment of its effectiveness in detecting brain tumors. The proposed algorithm achieves maximum detection accuracy, detection sensitivity and specificity up to 98%, 99% and 99.5% respectively. The experimental outcomes showcase the efficiency of the algorithm in detection of brain tumor. CONCLUSION: The proposed work mainly contributes in brain tumor detection in the following aspects: a) use of combination of transform methods for texture feature extraction from MRI scans b) hybrid feature selection methods using firefly and glow-worm optimization algorithms for selection of feature c) employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3