Unsupervised authorship attribution using feature selection and weighted cosine similarity

Author:

Martín-del-Campo-Rodríguez Carolina1,Sidorov Grigori1,Batyrshin Ildar1

Affiliation:

1. Centro de Investigación en Computación, Instituto Politécnico Nacional, Juan de Dios Bátiz, NuevaIndustrial Vallejo, Mexico City, Mexico

Abstract

This paper presents a computational model for the unsupervised authorship attribution task based on a traditional machine learning scheme. An improvement over the state of the art is achieved by comparing different feature selection methods on the PAN17 author clustering dataset. To achieve this improvement, specific pre-processing and features extraction methods were proposed, such as a method to separate tokens by type to assign them to only one category. Similarly, special characters are used as part of the punctuation marks to improve the result obtained when applying typed character n-grams. The Weighted cosine similarity measure is applied to improve the B 3 F-score by reducing the vector values where attributes are exclusive. This measure is used to define distances between documents, which later are occupied by the clustering algorithm to perform authorship attribution.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference10 articles.

1. A new featureselectionmethod to improve the document clustering using particleswarm optimization algorithm;Abualigah;Journal of Computational Science,2018

2. A comparison ofextrinsic clustering evaluation metrics based on formal constraints;Amigó;Information retrieval,2009

3. of similarity measures for binary data and2×2 tables;Batyrshin;Computación y Sistemas

4. Authorship attribution using content basedfeatures and n-gram features;Dara;International Journal ofEngineering and Advanced Technology,2019

5. Efficient feature selectionfilters for high-dimensional data;Ferreira;Pattern Recognition Letters,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Medical Decision Recommendation Generation and Similarity Fusion Based on CDSS and ChatGPT-4;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. Towards Improving Multiple Authorship Attribution of Source Code;2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3