Trust aware routing using sunflower sine cosine-based stacked autoencoder approach for EEG signal classification in WSN

Author:

Kumaraguru Shanthi1,Jebarani M.R. Ebenezar2

Affiliation:

1. Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. E-mail: gurushaanguru@gmail.com

2. Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. E-mail: rjebamalgam@gmail.com

Abstract

Trust-aware routing is the significant direction for designing the secure routing protocol in Wireless Sensor Network (WSN). However, the trust-aware routing mechanism is implemented to evaluate the trustworthiness of the neighboring nodes based on the set of trust factors. Various trust-aware routing protocols are developed to route the data with minimum delay, but detecting the route with good quality poses a challenging issue in the research community. Therefore, an effective method named Sunflower Sine Cosine (SFSC)-based stacked autoencoder is designed to perform Electroencephalogram (EEG) signal classification using trust-aware routing in WSN. Moreover, the proposed SFSC algorithm incorporates Sunflower Optimization (SFO) and Sine Cosine Algorithm (SCA) that reveals an optimal solution, which is the optimal route used to transmit the EEG signal. Initially, the trust factors are computed from the nodes simulated in the network environment, and thereby, the trust-based routing is performed to achieve EEG signal classification. The proposed SFSC-based stacked autoencoder attained better performance by selecting the optimal path based on the fitness parameters, like energy, trust, and distance. The performance of the proposed approach is analyzed using the metrics, such as sensitivity, accuracy, and specificity. The proposed approach acquires 94.708%, 94.431%, and 95.780% sensitivity, accuracy, and specificity, respectively, with 150 nodes.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on WSN Intelligent Routing Algorithm Based on Bayesian Learning and particle swarm optimization;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering);2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3