Affiliation:
1. Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. E-mail: gurushaanguru@gmail.com
2. Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. E-mail: rjebamalgam@gmail.com
Abstract
Trust-aware routing is the significant direction for designing the secure routing protocol in Wireless Sensor Network (WSN). However, the trust-aware routing mechanism is implemented to evaluate the trustworthiness of the neighboring nodes based on the set of trust factors. Various trust-aware routing protocols are developed to route the data with minimum delay, but detecting the route with good quality poses a challenging issue in the research community. Therefore, an effective method named Sunflower Sine Cosine (SFSC)-based stacked autoencoder is designed to perform Electroencephalogram (EEG) signal classification using trust-aware routing in WSN. Moreover, the proposed SFSC algorithm incorporates Sunflower Optimization (SFO) and Sine Cosine Algorithm (SCA) that reveals an optimal solution, which is the optimal route used to transmit the EEG signal. Initially, the trust factors are computed from the nodes simulated in the network environment, and thereby, the trust-based routing is performed to achieve EEG signal classification. The proposed SFSC-based stacked autoencoder attained better performance by selecting the optimal path based on the fitness parameters, like energy, trust, and distance. The performance of the proposed approach is analyzed using the metrics, such as sensitivity, accuracy, and specificity. The proposed approach acquires 94.708%, 94.431%, and 95.780% sensitivity, accuracy, and specificity, respectively, with 150 nodes.
Subject
Computer Networks and Communications,Hardware and Architecture,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on WSN Intelligent Routing Algorithm Based on Bayesian Learning and particle swarm optimization;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering);2023-07-10