An effective community-based link prediction model for improving accuracy in social networks

Author:

Iqbal M. Mohamed1,Latha K.2

Affiliation:

1. Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India

2. Department of Computer Science and Engineering, University College of Engineering, Anna University (B.I.T Campus), Tiruchirappalli, Tamil Nadu, India

Abstract

Link prediction plays a predominant role in complex network analysis. It indicates to determine the probability of the presence of future links that depends on available information. The existing standard classical similarity indices-based link prediction models considered the neighbour nodes have a similar effect towards link probability. Nevertheless, the common neighbor nodes residing in different communities may vary in real-world networks. In this paper, a novel community information-based link prediction model has been proposed in which every neighboring node’s community information (community centrality) has been considered to predict the link between the given node pair. In the proposed model, the given social network graph can be divided into different communities and community centrality is calculated for every derived community based on degree, closeness, and betweenness basic graph centrality measures. Afterward, the new community centrality-based similarity indices have been introduced to compute the community centralities which are applied to nine existing basic similarity indices. The empirical analysis on 13 real-world social networks datasets manifests that the proposed model yields better prediction accuracy of 97% rather than existing models. Moreover, the proposed model is parallelized efficiently to work on large complex networks using Spark GraphX Big Data-based parallel Graph processing technique and it attains a lesser execution time of 250 seconds.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3