Color multi-focus image fusion based on transfer learning

Author:

Wang Yun12,Jin Xin12,Yang Jie13,Jiang Qian12,Tang Yue4,Wang Puming12,Lee Shin-Jye5

Affiliation:

1. School of Software, Yunnan University, Kunming, Yunnan, China

2. Engineering Research Center of Cyberspace, Yunnan University, Kunming, China

3. School of Physics and Electronic Science, Normal University, Zunyi, China

4. School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, China

5. Institute of Technology Management, National Chiao Tung University, Hsinchu, Taiwan

Abstract

Multi-focus image fusion is a technique that integrates the focused areas in a pair or set of source images with the same scene into a fully focused image. Inspired by transfer learning, this paper proposes a novel color multi-focus image fusion method based on deep learning. First, color multi-focus source images are fed into VGG-19 network, and the parameters of convolutional layer of the VGG-19 network are then migrated to a neural network containing multilayer convolutional layers and multilayer skip-connection structures for feature extraction. Second, the initial decision maps are generated using the reconstructed feature maps of a deconvolution module. Third, the initial decision maps are refined and processed to obtain the second decision maps, and then the source images are fused to obtain the initial fused images based on the second decision maps. Finally, the final fused image is produced by comparing the QABF metrics of the initial fused images. The experimental results show that the proposed method can effectively improve the segmentation performance of the focused and unfocused areas in the source images, and the generated fused images are superior in both subjective and objective metrics compared with most contrast methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference44 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3