Dual stage ensemble technique for intrusion detection in cloud computing

Author:

Neelakantan P.1,Sudhakar Yadav N.2

Affiliation:

1. Department of Computer Science & Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Vignana Jyothi Nagar, Pragathi Nagar, Hyderabad, Telangana 500090, India

2. Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology, Vignana Jyothi Nagar, Pragathi Nagar, Hyderabad, Telangana 500090, India

Abstract

A capability of cloud-based IDS in identifying complicated and anonymous attacks is rising in the current era. However, unwanted delays hinder the detection rate. A malicious user might utilize vast quantities of computational power. The cloud provides to perform attacks both within and without the cloud. Furthermore, there are major challenges for intrusion detection due to the ease of the cloud and also the continual restructuring and movement of cloud resources. Intruder detection, feature extraction, and data processing are all included in the novel optimization-based Intrusion Detection System (IDS) paradigm that will be presented in this study. Data normalization is used to first pre-process the input data. Then, appropriate feature extraction is carried out, including the extraction of (a) raw features, (b) statistical features, then (c) higher-order statistical features using suggested kurtosis. The detection phase is then applied to the retrieved features. A two-stage ensemble method is suggested for finding intruders in clouds. Random forest (RF), Support Vector Machine (SVM), optimal Neural Network (NN), and RNN make up the suggested ensemble technique. The RF, SVM, and Optimized NN algorithms are directly fed the collected features. The output of these classifiers is then provided to the RNN classifier (i.e.), RF output to RNN1, SVM output to RNN2, and optimized NN output to RNN3. Then, the weighted average of RNN 1, 2, and 3 is considered as the final output. A Self Adaptive Salp Swarm Optimization optimizes the weights of NN for exact detection (SA-SSO). Finally, a test is conducted to confirm the developed model’s superiority.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3