Entropy generation and chemical reaction effects on MHD non-Newtonian nanofluid flow in a sinusoidal channel

Author:

Ouaf Mahmoud E.1,Abou-zeid Mohamed1,Younis Yasmeen M.1

Affiliation:

1. , Ain Shams University, , , , Egypt

Abstract

This article discusses the effects of entropy generation as well as slip velocity condition on MHD Jeffery nanofluid flow through a porous medium in a channel with peristalsis. We take the effects of mixed convection, heat source, double diffusion and chemical reaction into consideration. Using the assumption of low-Reynolds number and long-wavelength, series solutions of the governing equations are obtained via homotopy perturbation method. Results will be discussed at various parameters of the problem and drawn graphically. Physically, our model is consistent with the motion of digestive juice in the bowel whenever we are going to insert an endoscopy through it. It is noticed that the axial velocity magnifies with an increase in the values of both first and second slip parameters. Meanwhile, the value of the axial velocity reduces with the elevation in the values of both Grashoff and Darcy numbers. On the other hand, the elevation in the value of thermal radiation leads to a reduction in the value of fluid temperature. Furthermore, increasing in the value of order of chemical reaction parameter makes an enhancement in the value of the solutal concentration. It is noticed also that the entropy generation enhances with the increment in the value of Eckert number. The current study has many accomplishments in several scientific areas like engineering industry, medicine, and others. Therefore, it represents the gastric juice motion depiction in the human body when an endoscope is inserted through it.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference45 articles.

1. Torsion and curvature effects on fluid flow in a helical annulus;Nobari;International Journal of Non-Linear Mechanics,2013

2. Measuring thermal conductivity of fluids containing oxide nanoparticles;Lee;Journal of Heat Transfer,1999

3. Heat transfer enhancement of nanofluids;Xuan;The International Journal of Heat and Fluid Flow,2000

4. Pool boiling characteristics of nano-fluids;Das;International Journal of Heat and Mass Transfer,2003

5. Thermal conductivity of nanoparticle–fluid mixture;Wang;Journal of Thermophysics and Heat Transfer,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3