Comparison of the effect of bone induction with different exercise modes in mice

Author:

Liu Juan1,He Hongyan1,Tang Lu1,Peng Yu1,Mu Junyu1,Lan Liang1,Chen Cheng1,Dong Zhihong1,Cheng Lijia1

Affiliation:

1. , Chengdu University, , China

Abstract

BACKGROUD: Calcium phosphate biomaterials have excellent bone inductivity, and exercise can promote the bone formation of biomaterials in animals, but it is not clear which exercise mode is better. OBJECTIVE: To explore the effect of different exercise modes on osteoinduction by calcium phosphate-based biomaterials which were implanted in mice. METHOD: The collagen-thermosensitive hydrogel-calcium phosphate (CTC) composite was prepared and transplanted in the thigh muscle of mice, then all mice were divided randomly into four groups (n = 10): the uphill running group, the downhill running group, the swimming group and the control group (conventional breeding). Ten weeks later, the samples were harvested, fixed, decalcified, embedded in paraffin and stained with hematoxylin and eosin (H&E), and then the osteoinduction phenomenon was observed and compared through digital slice scanning system. The area percentage of new bone-related tissues and the number of osteocytes and chondrocytes were counted and calculated. Lastly, the immunohistochemistry of type I collagen (ColI) and osteopontin (OPN) was performed to identify the new bone tissues. RESULTS: The area percentage of new bone-related tissues and the number of osteocytes and chondrocytes were positively correlated; ordering from most to least of each group were as followings: the uphill running group > the swimming group > the downhill running group > the control group. The immunostaining of ColI and OPN results showed that both of the two proteins were identified in the new bone tissues, indicating that the CTC composite could induce ectopic bone formation in mice, especially training for uphill running and swimming. CONCLUSION: Our results show that uphill running or swimming is a form of exercise that is beneficial to osteogenesis. According to this, we propose treatment with artificial bone transplantation to patients who suffer from bone defects. Patients should do moderate exercise, such as running uphill on the treadmill or swimming.

Publisher

IOS Press

Subject

Biomedical Engineering,Biomaterials,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3