Improved genetic algorithm for solving the total weight tardiness job shop scheduling problem

Author:

Wang Hanpeng1,Xiong Hengen1

Affiliation:

1. Wuhan University of Science and Technology, Wuhan, China

Abstract

An improved genetic algorithm is proposed for the Job Shop Scheduling Problem with Minimum Total Weight Tardiness (JSSP/TWT). In the proposed improved genetic algorithm, a decoding method based on the Minimum Local Tardiness (MLT) rule of the job is proposed by using the commonly used chromosome coding method of job numbering, and a chromosome recombination operator based on the decoding of the MLT rule is added to the basic genetic algorithm flow. As a way to enhance the quality of the initialized population, a non-delay scheduling combined with heuristic rules for population initialization. and a PiMX (Precedence in Machine crossover) crossover operator based on the priority of processing on the machine is designed. Comparison experiments of simulation scheduling under different algorithm configurations are conducted for randomly generated larger scale JSSP/TWT. Statistical analysis of the experimental evidence indicates that the genetic algorithm based on the above three improvements exhibits significantly superior performance for JSSP/TWT solving: faster convergence and better scheduling solutions can be obtained.

Publisher

IOS Press

Reference29 articles.

1. Priority rules for job shops with weighted tardiness costs;Vepsalainen;Management Science,1987

2. A MIP model and a hybrid genetic algorithm for flexible job-shop scheduling problem with job-splitting;Tutumlu;Computers & Operations Research,2023

3. Extended GRASP for the job shop scheduling problem with total weighted tardiness objective;Bierwirth;European Journal of Operational Research,2017

4. The total tardiness problem: Review and extensions;Koulamas;Operations Research,1994

5. An effective hybrid genetic algorithm for the job shop scheduling problem;Zhang;The International Journal of Advanced Manufacturing Technology,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3