Some issues in creep-fatigue research

Author:

Nonaka Isamu1

Affiliation:

1. Graduate School of Engineering, Tohoku University, , Japan E-mail: nonaka.isamu@rift.mech.tohoku.ac.jp

Abstract

In the component operated at elevated temperatures, the life evaluation should be made in consideration of both creep and fatigue (creep-fatigue) such as the linear damage summation rule. However, the concept of creep-fatigue life evaluation has not spread well in the industry. In order to consider the reason, a series of past creep-fatigue research was surveyed, namely experimental methods, life evaluation procedures and strength design guidelines. As a result, it was revealed that the mechanism of creep-fatigue interaction has not been fully clarified yet, which results in obscuring the necessity of creep-fatigue life evaluation. The necessity of creep-fatigue life evaluation was reviewed and consequently it proved to be necessary in two cases. One is the case where the creep-fatigue interaction is significant for some kinds of material, loading modes and temperatures. The other is one where the amount of creep damage is almost the same as that of fatigue damage even though the creep-fatigue interaction is insignificant.

Publisher

IOS Press

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Creep-fatigue interaction properties of Ni-based superalloy 617;Kobayashi;Acta Met Sin (English Letters),2011

2. NIMS Fatigue Data Sheet, No. 113, 2011.

3. The meaning of creep rupture ductility for advanced high Cr ferritic steels;Nonaka;Therm Nucl Pow,2018

4. Prediction of creep-fatigue lives for FBR and boiler materials based on ductility exhaustion concept;Nonaka;Mat Sci Res Int,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Creep-Fatigue Behavior of Uniaxial Cross-Weld and Stub Weld of HR6W;Journal of the Society of Materials Science, Japan;2024-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3