Development of an efficient novel method for coronary artery disease prediction using machine learning and deep learning techniques

Author:

Mansoor C.M.M.12,Chettri Sarat Kumar3,Naleer H.M.M.4

Affiliation:

1. Research Scholar, Assam Don Bosco University, Guwahati, India

2. South Eastern University of Sri Lanka, Oluvil, Sri Lanka

3. Department of Computer Applications, Assam Don Bosco University, Guwahati, India

4. Department of Computer Science, South Eastern University of Sri Lanka, Oluvil, Sri Lanka

Abstract

BACKGROUND: Heart disease is a severe health issue that results in high fatality rates worldwide. Identifying cardiovascular diseases such as coronary artery disease (CAD) and heart attacks through repetitive clinical data analysis is a significant task. Detecting heart disease in its early stages can save lives. The most lethal cardiovascular condition is CAD, which develops over time due to plaque buildup in coronary arteries, causing incomplete blood flow obstruction. Machine Learning (ML) is progressively used in the medical sector to detect CAD disease. OBJECTIVE: The primary aim of this work is to deliver a state-of-the-art approach to enhancing CAD prediction accuracy by using a DL algorithm in a classification context. METHODS: A unique ML technique is proposed in this study to predict CAD disease accurately using a deep learning algorithm in a classification context. An ensemble voting classifier classification model is developed based on various methods such as Naïve Bayes (NB), Logistic Regression (LR), Decision Tree (DT), XGBoost, Random Forest (RF), Convolutional Neural Network (CNN), Support Vector Machine (SVM), K Nearest Neighbor (KNN), Bidirectional LSTM and Long Short-Term Memory (LSTM). The performance of the ensemble models and a novel model are compared in this study. The Alizadeh Sani dataset, which consists of a random sample of 216 cases with CAD, is used in this study. Synthetic Minority Over Sampling Technique (SMOTE) is used to address the issue of imbalanced datasets, and the Chi-square test is used for feature selection optimization. Performance is assessed using various assessment methodologies, such as confusion matrix, accuracy, recall, precision, f1-score, and auc-roc. RESULTS: When a novel algorithm achieves the highest accuracy relative to other algorithms, it demonstrates its effectiveness in several ways, including superior performance, robustness, generalization capability, efficiency, innovative approaches, and benchmarking against baselines. These characteristics collectively contribute to establishing the novel algorithm as a promising solution for addressing the target problem in machine learning and related fields. CONCLUSION: Implementing the novel model in this study significantly improved performance, achieving a prediction accuracy rate of 92% in the detection of CAD. These findings are competitive and on par with the top outcomes among other methods.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3