Proposal of the Coupled Thermomechanical Model of a Crank Mechanism

Author:

Chilinski Bogumil1,Mackojc Anna1

Affiliation:

1. Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland

Abstract

The aim of the paper is to propose analytical coupled thermomechanical model of the crankshaft system, which includes the mutual interaction between thermodynamic and mechanical phenomena occurring in engines. The most relevant dynamic effects observable in the crank system are connected with its kinematics. When the mechanism operates there are also additional effects corresponding with stress, strain and thermal fields. Elastic properties of the system parts and changeable stiffness of the fuel-air mixture cause different dynamics of the entire device. The authors assumed that rigid motion of the crank mechanism, parts deformation and thermodynamic effects and their mutual dependencies will be included in the modelling process. Elasticity of the crankshaft system components is the reason for the difference between a rigid ’ideal’ motion and the real movement of crankshaft elements. In most cases, it is enough to assume linear elastic material features based on the relatively high stiffness of the system preventing big deformations. This ensures small displacements and the correctness of the applied model. The performed investigations have shown an influence of the crank system flexibility on the overall device response. Moreover, the parameters that change due to thermodynamic and mechanical properties of the working medium were taken into account. The authors have applied simple engine cycles (Otto, Diesel or combined model) for determining engine load including the connection between mechanical and thermodynamic state variables. This caused another decrease of the total system stiffness. Further numerical testing proved a visible effect of the applied approach in the global system response. The main discrepancies are observable in natural frequencies and vibration modes. It can also be stated that the utilization of different engine cycles results in different engine features. The paper is concluded with an analysis of the existing systems and mutual reactions from the assumed phenomena. The authors have shown the necessity to take a transdisciplinary approach into account in order to model complex systems.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3