S-Paths: Set-based visual exploration of linked data driven by semantic paths

Author:

Destandau Marie1,Appert Caroline1,Pietriga Emmanuel1

Affiliation:

1. Université Paris-Saclay, CNRS, Inria, LRI, France. E-mails: marie.destandau@inria.fr, caroline.appert@lri.fr, emmanuel.pietriga@inria.fr

Abstract

Meaningful information about an RDF resource can be obtained not only by looking at its properties, but by putting it in the broader context of similar resources. Classic navigation paradigms on the Web of Data that employ a follow-your-nose strategy fail to provide such context, and put strong emphasis on first-level properties, forcing users to drill down in the graph one step at a time. We introduce the concept of semantic paths: starting from a set of resources, we follow and analyse chains of triples and characterize the sets of values at their end. We investigate a navigation strategy based on aggregation, relying on path characteristics to determine the most readable representation. We implement this approach in S-Paths, a browsing tool for linked datasets that systematically identifies the best rated view on a given resource set, leaving users free to switch to another resource set, or to get a different perspective on the same set by selecting other semantic paths to visualize.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference31 articles.

1. G.A. Atemezing and R. Troncy, Towards a linked-data based visualization wizard, in: COLD 2014 – Consuming Linked Data – Proceedings of the 5th International Workshop on Consuming Linked Data (COLD 2014) Co-Located with the 13th International Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, October 20, 2014, O. Hartig, A. Hogan and J. Sequeda, eds, 2014, http://ceur-ws.org/Vol-1264/cold2014_AtemezingT.pdf.

2. Exploring the geospatial semantic web with DBpedia mobile;Becker;Journal of Web Semantics,2009

3. T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach, A. Lerer and D. Sheets, Tabulator: Exploring and analyzing linked data on the semantic web, in: Proceedings of the 3rd International Semantic Web User Interaction Workshop, Vol. 2006, 2006, p. 159.

4. Linked data on the web (LDOW2008)

5. N. Bikakis and T.K. Sellis, Exploration and visualization in the web of big linked data: A survey of the state of the art, in: 6th Intl. Workshop on Linked Web Data Management (LWDM’16), 2016, http://arxiv.org/abs/1601.08059.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LDViz: A Tool to Assist the Multidimensional Exploration of SPARQL Endpoints;Lecture Notes in Business Information Processing;2023

2. Using Chained Views and Follow-Up Queries to Assist the Visual Exploration of the Web of Big Linked Data;International Journal of Human–Computer Interaction;2022-08-23

3. KTabulator: Interactive Ad hoc Table Creation using Knowledge Graphs;Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems;2021-05-06

4. From Linked Data Querying to Visual Search: Towards a Visualization Pipeline for LOD Exploration;Proceedings of the 17th International Conference on Web Information Systems and Technologies;2021

5. The missing path: Analysing incompleteness in knowledge graphs;Information Visualization;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3