Abstract
The target of this research is high dimension low sample size (HDLSS) data in which the number of variables (or dimensions) is much larger than the number of objects. For such a data, it is well known that mathematically (or statistically), we cannot obtain correct solutions as eigen values of the covariance matrix of variables, therefore, a lot of multivariate analyses cannot apply to this type of data. To overcome this problem, we have proposed a methodology for dimensional reduction, which is a fuzzy cluster scaled principal component analysis (fuzzy cluster scaled PCA). This paper presents a study of the applicability of the previously proposed fuzzy cluster scaled PCA for the discrimination of individual subjects observed by sensors worn on the body during several activities. The analysis of this data is useful for healthcare, considering the individuality of the history of activities, such as the implementation of a custom-made system for healthcare.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献