Fuzzy based self-tuned move lengths for enhanced performance of gas source localization algorithm

Author:

Gaurav Kumar

Abstract

The world has witnessed a lot of catastrophes in recent times due to chemical gas leaks. The core problem is untimely or sudden happenings of calamity for which humans are not prepared to take appropriate actions. Hence robotic gas source localization can be considered as an alternative to prevent such catastrophes. This paper presents an improved approach to an existing chemotactic plume tracing algorithm with self-tuned move length/step size. The technique uses the proposed fuzzy inference model to produce the move lengths for the next walk based on the input of gas concentration magnitude in the present state. The move lengths correspond to either the plume finding or plume tracing stage with which a mobile robot surges for the next step. Dynamic plumes under eight different simulated environments are created to evaluate the proposed approach rather than plumes in laminar flow for a more realistic case. Performance analysis of the algorithm is based on success rate with self-tuned move length compared with fixed move length. In addition, there is an analysis of step size parameters that vary concerning a particular environmental condition. Results show that adaptive step size can increase the success rate of the plume tracing algorithm and consequently improve search performance and efficiency.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Reference42 articles.

1. Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions;Hutchinson;Information Fusion.,2018

2. The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis;Müller;Journal of Comparative Physiology A.,1994

3. Lévy flight search patterns of wandering albatrosses;Viswanathan;Nature.,1996

4. Chemotaxis in Bacteria: Motile Escherichia coli migrate in bands that are influenced by oxygen and organic nutrients;Adler;Science (1979),1966

5. Robot odor localization: a taxonomy and survey;Kowadlo;Int J Rob Res.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3