A study of deep learning methods for same-genre and cross-genre author profiling

Author:

Ashraf Muhammad Adnan1,Adeel Nawab Rao Muhammad2,Nie Feiping1

Affiliation:

1. Northwestern Polytechnical University, Xi’an, China

2. COMSATS University Islamabad, Lahore Campus, Pakistan

Abstract

 The aim of the author profiling task is to automatically predict various traits of an author (e.g. age, gender, etc.) from written text. The problem of author profiling has been mainly treated as a supervised text classification task. Initially, traditional machine learning algorithms were used by the researchers to address the problem of author profiling. However, in recent years, deep learning has emerged as a state-of-the-art method for a range of classification problems related to image, audio, video, and text. No previous study has carried out a detailed comparison of deep learning methods to identify which method(s) are most suitable for same-genre and cross-genre author profiling. To fulfill this gap, the main aim of this study is to carry out an in-depth and detailed comparison of state-of-the-art deep learning methods, i.e. CNN, Bi-LSTM, GRU, and CRNN along with proposed ensemble methods, on four PAN Author Profiling corpora. PAN 2015 corpus, PAN 2017 corpus and PAN 2018 Author Profiling corpus were used for same-genre author profiling whereas PAN 2016 Author Profiling corpus was used for cross-genre author profiling. Our extensive experimentation showed that for same-genre author profiling, our proposed ensemble methods produced best results for gender identification task whereas CNN model performed best for age identification task. For cross-genre author profiling, the GRU model outperformed all other approaches for both age and gender.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference13 articles.

1. Sentiment analysis through recurrent variants latterly on convolutional neural network of twitter;Abid;Future Generation Computer Systems,2019

2. Gender, genre, and writing style in formal written texts;Argamon;Text-The Hague Then Amsterdam Then Berlin,2003

3. Deep learning;Bengio;Nature,2015

4. Enriching word vectors with subword information;Bojanowski;Transactions of the Association for Computational Linguistics,2017

5. Fatima M. , Hasan K. , Anwar S. and Muhammad Adeel Nawab R. , Multilingual author profiling on facebook, Information Processing and Management 53 07 (2017).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3