Triple trustworthiness evaluation for knowledge graph of industrial domain

Author:

Wang Chu1,Wang Jian1

Affiliation:

1. College of Electronic and Information Engineering, Tongji University, Shanghai, China

Abstract

The knowledge graph is widely used in industrial fields due to its structural characteristics. In order to reduce the cost of wrong decision-making, it is more important for the industrial knowledge graph to guarantee the quality and comprehensiveness of knowledge. In order to obtain the trustworthiness information of triples in the graph, this paper proposed a model to evaluate triple trustworthiness for industrial knowledge graphs(TT-IKG) and obtains the final score of triples by fusing the output of three sub-modules that investigate the local confidence of triples, the confidence of schema-matching and the confidence of global paths. Experiments on the real industrial knowledge graph of enterprises verified the effectiveness of the model, and the experimental results on the error detection and graph completion tasks of the knowledge graph show that the effect is better than that of other models.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference31 articles.

1. Introducing the knowledge graph: things, not strings[J];Singhal;Official Google Blog,2012

2. Knowledge Graphs for Efficient Integration and Access of Manufacturing Data;Grangel-González;25th IEEE International Conference on Emerging Technologies and Factory Automation ETFA Vienna Austria,2020

3. Industry-scale knowledge graphs: lessons and challenges;Noy;Communications of the ACM,2019

4. Hubauer T. , Lamparter S. , Haase P. and Herzig D.M. , Use cases of the industrial knowledge graph at siemens, International Semantic Web Conference (P&D/Industry/BlueSky), 2018.

5. Construction and Evolution of Fault Diagnosis Knowledge Graph in Industrial Process;Han;IEEE Transactions on Instrumentation and Measurement,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3