Badminton video action recognition based on time network

Author:

Zhi Juncai1,Sun Zijie1,Zhang Ruijie12,Zhao Zhouxiang2

Affiliation:

1. Department of Physical Education, Tangshan Normal University, Tangshan, Hebei, China

2. Graduate School of Jeonju University, Jeonju, Korea

Abstract

With the continuous development of artificial intelligence research, computer vision research has shifted from traditional “feature engineering”-based methods to deep learning-based “network engineering” methods, which automatically extracts and classifies features by using deep neural networks. Traditional methods based on artificial design features are computationally expensive and are usually used to solve simple research problems, which is not conducive for large-scale data feature extraction. Deep learning-based methods greatly reduce the difficulty of artificial features by learning features from large-scale data and are successfully applied in many visual recognition tasks. Video action recognition methods also shift from traditional methods based on artificial design features to deep learning-based methods, which is oriented to building more effective deep neural network models. Through collecting and sorting related research results found that academic for timing segment network of football and basketball video action research is relatively rich, but lack of badminton research given the above research results, this study based on timing segment network of badminton video action identification can enrich the research results, provide reference for follow-up research. This paper introduces the lightweight attention mechanism into the temporal segmentation network, forming the attention mechanism-timing segmentation network, and trains the neural network to get the classifier of badminton stroke action, which can be predicted as four common types: forehand stroke, backhand stroke, overhead stroke and pick ball. The experimental results show that the recognition recall and accuracy of various stroke movements reach more than 86%, and the average size of recall and accuracy is 91.2% and 91.6% respectively, indicating that the method based on timing segmentation network can be close to the human judgment level and can effectively conduct the identification task of badminton video strokes.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference20 articles.

1. On an algorithm for human action recognition;Sahoo;Expert Syst Appl.,2018

2. Human action recognition algorithm based on adaptive initialization of deep learning model parameters and support vector machine;An;IEEE Access.,2018

3. Research on the recognition algorithm of basketball technical action based on BP neural system;Hou;Sci Programming-Neth.,2022

4. Application of Convolution Neural Network (CNN) model combined with pyramid algorithm in aerobics action recognition;Liang;Comput Intel Neurosc.,2021

5. Human action recognition algorithm based on multi-feature map fusion;Wang;IEEE Access.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3