Characterisation of factor IX with a glycine-to-valine missense mutation at residue 190 in a patient with severe haemophilia B

Author:

Kao Chung-Yang,Lin Chia-Ni,Yang Yung-Li,Hamaguchi Nobuko,Yang Shu-Jhu,Shen Ming-Ching,Kao Jau-Tsuen,Lin Shu-Wha

Abstract

SummaryA patient with severe haemophilia B with a glycine-to-valine missense mutation at residue 190 (c25, chymotrypsin numbering) in factor IX (FIX; FIX-G190V or FIX-FuChou) had <1% of normal FIX clotting activity and 36% of normal FIX antigen levels (cross-reacting material-reduced, CRMr). Residue 190 in the C-terminal protease domain of human FIX is highly conserved in mammalian species and the serine protease family, suggesting that it has an indispensable role in protein function. To explore the pathological mechanism by which this mutation contributes to dysfunction of the FIX molecule, we functionally characterised FIX-G190V in vitro and in vivo. Liver-specific FIX-G190V gene expression following hydrodynamic plasmid delivery into haemophilia B mice revealed a 5.7-fold reduction in specific clotting activity compared with FIX-WT (wild type) and a two-fold decrease in plasma FIX-G190V concentration. Pulse-chase analysis demonstrated that FIX-G190V was secreted at a significantly slower rate than was FIX-WT. Purified FIX-G190V and FIX-WT displayed normal calcium-dependent conformational changes as shown by intrinsic fluorescence quenching. The in vivo half-lives of FIX-G190V and FIX-WT were indistinguishable. FIX-G190V was, however, more readily degraded than FIX-WT, especially after being activated by the active form of FXI. The vulnerable sites were mapped to the peptide bonds at Arg116-Leu117, Lys265-Tyr266, Arg327-Val328, and Arg338-Ser339, which are in the exposed loops of the FIX molecule. Also, failure of FXIa-activated FIX-G190V to bind p-aminobenzamidine indicated an abnormal conformation of the active-site pocket. Thus, the mutation at residue 190 of FIX may result in protein misfolding that affects secretion, clotting function, and hydrolysis.

Funder

National Science Council

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3